Tuesday 24 July 2012

1001 Problems in Classical Number Theory Koninck, Jean-Marie De & Mercier, Armel

IMAGE NOT AVAILABLE


1001 Problems in Classical Number Theory
Koninck, Jean-Marie De & Mercier, Armel
2011; 352 pp; Paperback; 180 × 240 mm; 978-0-8218-6888-1
For sale only in India,Pakistan,Nepal,Bhutan,Bangladesh,Sri Lanka,Maldives
Series: Indian Editions of AMS Titles
755.00
In the spirit of The Book of the One Thousand and One Nights, the authors offer 1001 problems in number theory in a way that entices the reader to immediately attack the next problem. Whether a novice or an experienced mathematician, anyone fascinated by numbers will find a great variety of problems--some simple, others more complex--that will provide them with a wonderful mathematical experience.

Table of Contents
Distribution of the Problems according to Their Topics
Preface 
Part 1. Key Elements from the Theory 
Notations 
Some Classical Forms of Argument 
Inequalities 
Divisibility 
Prime Numbers 
Congruences 
The Function [x] 
Arithmetical Functions 
Diophantine Equations 
Quadratic Reciprocity
Continued Fractions 
Classification of Real Numbers 
Two Conjectures 
Part 2. Statements of the Problems 
Mathematical Induction and Combinatorics 
Divisibility 
Prime Numbers 
Representation of Numbers 
Congruences 
Primality Tests and Factorization Algorithms 
Integer Parts
Arithmetical Functions 
Solving Equations Involving Arithmetical Functions 
Special Numbers 
Diophantine Equations 
Quadratic Reciprocity 
Continued Fractions 
Classification of Real Numbers 
Part 3. Solutions 
Bibliography 
Subject Index 
Index of Authors

About the Author
Jean-Marie De Koninck, Université Laval, Quebec, QC, Canada Armel Mercier, Université du Québec à Chicoutimi, QC, Canada

No comments:

Post a Comment